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“Is Greece like going bankcrupt or some
shit?! Cameron n Merkel is probabli blah
blah blah tevs facepalm
It'll be Germanys downfall..so wotEVA
#DILLIGAS #euro £zzzzz
5 more days until i travel to GREEZE yay”

“BBC: Greece faces a critical 24 hours as an
emergency summit is held today.
Cameron, Merkel, and most other Eurozone
leaders want to break the deadlock around
the country's debt crisis.”
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GRICE'S COOPERATIVE PRINCIPLE

A rough, general communication principle which
participants in an effective rational conversation will be
expected to observe

“Make your conversational contribution
such as is required,
at the stage at which it occurs,
by the accepted purpose or
direction of the talk exchange
in which you are engaged.”

Grice, H. P. (1975): 45.
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GRICE'S CONVERSATIONAL MAXIMS

e Make your contribution as informative as is required (for the
current purposes of the exchange).
e Do not make your contribution more informative than is
Quantity  required.

e Try to make your contribution one that is true.
e Do not say what you believe to be false.
Quality  « Do not say that for which you lack adequate evidence.

Relation « Berelevant.

e Be perspicuous.

e Avoid obscurity of expression.

e Avoid ambiguity.

e Be brief (avoid unnecessary prolixity).
Be orderly.

Manner
Grice, H. P. (1975): 45-8.
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VERISIMILITUDE

e Given that the maxims are flouted or violated, some texts
are true(r) to the maxims (unmarkedness), some less so
(markedness)

o We quantify qualitative markedness with a complex,
subjective, and probabilistic composite measure along a
continuum between

@ truthful | plausible | clear relevant
truthlike | fact  possible

untruthful | implausible| unclear irrelevant
untruthlike | impossible
factoid
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TRUTHFULNESS

e Truthful: the speaker's intention not to misrepresent
information

e Untruthful: deliberate or unintentional misrepresention of
information by the speaker

Speaker Hearer

Truth true true
Truth false false
true false
false true

BS * *
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TRUTHFULNESS
TOPOLOGIES OF DECEPTION

e Distortions: lies | exaggerations

e Unlies: false implications | misleadings

e Concealments: secrets | half-truths | masks

e Diversionary responses: hedges | nonsequiturs | evasion |
topic switches | irrelevance | ambiguity | equivocation |
amphiboly | vagueness | doublethink | accent

e Other: crimes | fictions | playings

(after Hopper & Bell (1984) and Turner et al. (1975) in Burgoon (1996))
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PLAUSIBILITY

e Not all events or states of affairs in the world are equally
» frequent | possible

e Not all thoughts, ideas, propositions, beliefs, and
assumptions are equally
= conventional | thinkable

e Not all logical deductions and inferences are equally
» provable | inferrable | consistent

e Therefore, texts differ across these dimensions, too
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CLARITY AND RELEVANCE

e Since not all texts require the same amount of cognitive
processing, they vary in
= understandability | readability | well-formedness |

coherence | consistency | naturalness

e Discourse structure, presentation, and delivery all shape
verisimilitude greatly
» flow | cohesion | interestingness

e Depending on the topic, turn or stage in the discourse, or
the speaker or hearer in question, texts vary
tremendously in
m topicality | aboutness | informativeness
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LINGUISTIC VERISIMILITUDE COMPUTATION

e Acomplex composite measure comes with many big
linguistic detection, classification, and scoring challenges
e Propositional truth | inference | presupposition
e Entailment | factivity
B |otan etal. (2013) | Androutsopoulos & Malakasiotis (2010) | MacCartney
et al. (2006)
e Contradiction
B de Marneffe et al. (2008) | Ritter et al. (2008)
e Veridicality | veridicity | uncertainty | beliefs | modality |
speculation | hedging
B de Marneffe et al. (2011) | Moncecchi et al. (2012) | Farkas et al. (2010) |
Sanchez & Vogel (2015) | Szarvas et al. (2012) | Karttunen & Zaenen (2005)
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LINGUISTIC VERISIMILITUDE COMPUTATION

e Non-literal meaning | metaphors | figurative language
B Shutova (2015) | Loenneker-Rodman & Narayanan (2008)
e Sarcasm | irony
B Bamman & Smith (2015) | Ghosh et al. (2015) | Barbieri & Saggion (2014) |
Lukin & Walker (2013) | Reyes et al. (2013)
e Humour
B Zhang & Liu (2014) | Kao et al. (2013) | Mihalcea & Pulman (2007)
e Understandability | readability | information quality
B Collins-Thompson (2014) | Flor et al. (2013) | Pitler & Nenkova (2008) | Kate
et al. (2010)
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LINGUISTIC VERISIMILITUDE COMPUTATION

e Bias | framing

B Baumer et al. (2015) | Recasens et al. (2013)
e Redundancy | text simplification

B Horn et al. (2014) | Zanzotto et al. (2011)
e Objectivity | factuality | subjectivity
e Sentiment | emotion | affect
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EXTRALINGUISTIC VERISIMILITUDE
COMPUTATION

e Even more challenges stem from extralinguistic factors
 Information credibility | reliability
Castillo et al. (2011) | Mitra & Gilbert (2015)

e Fact checking

®m Ciampaglia et al. (2015)
e User-specific relevance and interestingness criteria
e Information propagation | memes | rumours

B Qazvinian et al. (2011)
e World knowledge | ultimately everything...
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VERISIMILITUDE COMPUTATION:
APPROACHES

e Predictably, the majority of studies surrounding the topic
have resorted to (un)supervised learning

e Need for rich features for specific topics, cognitive
dimensions, syntax, stylistics, and discourse

e OK performance in some but not all aspects of
verisimilitude

e (Un)availability of training data
= plenty of 'proper’ vs. 'junk' quality texts available
» topic-specific deception data sets typically come from

artificial, simulated lab conditions
e Hence no panacea in challenging real-world conditions
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VERISIMILITUDE COMPUTATION:
APPROACHES

e Some verisimilitude cues can be modelled directly
= deception cues identified in psychological studies
= many simple but well-established readability scores
and text clarity measures
= while some are moderately robust, many cues are too
weak (individually) or even contradictory
= substractive ‘lie’ vs. additive ‘truth’ cues
= easily configurable
e Some form of inductive reasoning is required
e Large knowledge graphs and bases
» fact checking and plausibility estimates
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HUMAN PERFORMANCE (ACCURACY?)

“If liars were much better,
truth telling would be less common:
if detectors were much better,
few lies would be attempted.”

Bond & De Paulo (2006): 233.
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HUMAN PERFORMANCE (ACCURACY?)

34% acc Recognising lies Levine (2006)
40.7% acc Spotting biased words Recasens et al. (2013)
54% ~ 54.5% acc Recognising deception Aamodt (2006), Bond &
(meta-study) DePaulo (2006)
57.5% ~ 65% acc Recognising negative Ott (2013)
opinion spam
.63 k Recognising reduntant Zanzotto et al. (2011)
tweets
67% acc Recognising truth Levine (2006)
J7ICC Scoring credibility Mitra & Gilbert (2015)
.81k Recognising Marneffe (2008)
contradictions
.95 k Extracting rumours Qazvinian et al. (2011)
91~96% acc Interpreting entailment MacCartney et al. (2006)
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SAMPLE DATA

e UK 2015 General Election
e Four UK politicians
e Short speeches and manifestos by the politicians
= Spring 2015
e 1062 tweets by the politicians
= January - June 2015
e 1m tweets mentioning the politicians
= random sample from 3 029 276 tweets from January till
May 15 2015
= 250k tweets per politician
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SPEECH BY POLITICIAN 1

Verisimilitude

4 >
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SPEECH BY POLITICIAN 2

Verisimilitude
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SPEECH BY POLITICIAN 3

Verisimilitude

4 »
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SPEECH BY POLITICIAN 4

Verisimilitude
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SPEECHES BY POLITICIANS 1-4
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DISTRIBUTION OF SCORES

1k Tweets by Politicians 1-4

[l Pol 1
Il Pol 2
B Pol 3
Il Pol 4
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DISTRIBUTION OF SCORES

1m Tweets about Politicians 1-4
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VERISIMILITUDE CONFIDENCE

e Generally, the algorithm has higher confidence in stronger
verisimilitude scores

[l Confidence Y YRR | [
B Verisimilitude

1Hm
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® VERISIMILITUDE : @ SENTIMENT

e Positive verisimilitude and positive sentiment scores
exhibit only weak correlation

Spearman: 0.058
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VERISIMILITUDE : © SENTIMENT

e Negative verisimilitude and negative sentiment scores
correlate moderately

Spearman: 0.38
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1K TWEETS BY POLITICIANS 1-4

Sum Median Stdev Min Max ® %

Poll 44.262 -0.171 1.114 -2.593 4]1.1
Pol2 59.829 -0.135 1.218 -2.517 8.106 41.47
Pol 3 1.056 5.017

Pol4 31630 -0.044 1443 -1.791 12.869 69.38

e All politicians' median values are below zero!

e Politician 4 seems to have the strongest verisimilitude
profile (®) as well as the greatest dispersion

e Politician 3 has a weak-looking verisimilitude profile ()
with the least dispersion
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1K TWEETS BY POLITICIANS 1-4
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1M TWEETS ABOUT POLITICIANS 1-4

Sum Median Stdev Min Max ® %
Poll 0.906 0.418 1.756 -2.906 52.729 64.32

Pol 2 0.357 1.693 -2.723 54.632 62.03
Pol3 0.875 1.905 -3.054
Pol4 1.005 0.685 1.656 57.902 71.68

e The general public's median values are above zero!

e Politician 4 again seems to have the strongest
verisimilitude profile (@) but this time the least dispersion

e Politician 3 again has a weaker-looking verisimilitude
profile () with the most dispersion
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1M TWEETS ABOUT POLITICIANS 1-4
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OUTRO

e We model the qualitative (un)markedness of information
in text using a complex composite measure -
verisimilitude

e Verisimilitude reflects rational communication principles
and maxims pertaining to quantity, quality, relevance,
and manner

e Verisimilitude estimation is much more than deception,
sentiment, or emotion analysis, and involves a wide range
of linguistic devices and extralinguistic phenomena

e Verisimilitude estimates can be used as highly rich and
sensitive information filtering and ranking criteria
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